Optically driven oscillations of ellipsoidal particles. Part I: experimental observations.
نویسندگان
چکیده
We report experimental observations of the mechanical effects of light on ellipsoidal micrometre-sized dielectric particles, in water as the continuous medium. The particles, made of polystyrene, have shapes varying between near disk-like (aspect ratio k = 0.2) to very elongated needle-like (k = 8). Rather than the very tightly focused beam geometry of optical tweezers, we use a moderately focused laser beam to manipulate particles individually by optical levitation. The geometry allows us varying the longitudinal position of the particle, and to capture images perpendicular to the beam axis. Experiments show that moderate-k particles are radially trapped with their long axis lying parallel to the beam. Conversely, elongated (k > 3) or flattened (k < 0.3) ellipsoids never come to rest, and permanently "dance" around the beam, through coupled translation-rotation motions. The oscillations are shown to occur in general, be the particle in bulk water or close to a solid boundary, and may be periodic or irregular. We provide evidence for two bifurcations between static and oscillating states, at k ≈ 0.33 and k ≈ 3 for oblate and prolate ellipsoids, respectively. Based on a recently developed 2-dimensional ray-optics simulation (Mihiretie et al., EPL 100, 48005 (2012)), we propose a simple model that allows understanding the physical origin of the oscillations.
منابع مشابه
Hydrodynamic synchronization of autonomously oscillating optically trapped particles.
Ellipsoidal micron-sized colloidal particles can oscillate spontaneously when trapped in a focused laser beam. If two oscillating particles are held in proximity their oscillations synchronize through hydrodynamic interactions. The degree of synchronization depends on the distance between the oscillators and on their orientation. Due to the anisotropic nature of hydrodynamic coupling the synchr...
متن کاملElectromagnetic response of living matter
This thesis deals with theoretical physics problems related to the interactions between living matter and electromagnetic fields. The five research papers included provide an understanding of the physical mechanisms underlying such interactions. The introductory part of the thesis is an attempt to connect as well as provide a background for the papers. Below follows a summary of the results obt...
متن کاملOptically Driven Domain Instability and High-Frequency Current Oscillations in Photoexcited GaAs under Nonuniform Electron Heating
Fast domain instabilities induced by light-interference pattern in dc-biased semi-insulating GaAs are investigated. Current oscillations in GHz-frequency range are observed due to nonuniform electron heating and domains formation in light-induced grating. Characteristic features of the oscillations under various experimental conditions are presented. Numerical calculations based on the hot-elec...
متن کاملنوسانات آزاد زمین
This work is a study of the Earths free oscillations considering a merge of solid and liquid model. At the turn of 19th century Geophysicists presented the theory of the free oscillations for a self-gravitating, isotropic and compressible sphere. Assuming a steel structure for an Earth size sphere, they predicted a period of oscillation of about 1 hour. About 50 years later, the free oscillat...
متن کاملDust Particles and Aerosols: Impact on Biota “A Review” (Part I)
The impacts of Dust and Sand Storms (DSS) on people, crops, livestock, infrastructure and health are well documented. Data have accumulated on the deleterious effects of dust aerosols when they settle on plants. Sand blasting of low growing plants is a common cause of failure in reforestation efforts. Burial of plants by moving sands are also a cause of much damage. The physics of moving sand a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The European physical journal. E, Soft matter
دوره 37 12 شماره
صفحات -
تاریخ انتشار 2014